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Abstract. This paper proposes a mechanism to automatically assess
the safety of autonomous robots, and in particular autonomous cars.
Most methods to assess the safety of autonomous cars generate adver-
sary strategies, which will then be used to test whether the car being
assessed can avoid accidents with the adversary. To generate such adver-
sarial strategies, many have proposed learning techniques that require
a large amount of accident data. But, such data are difficult to obtain
because accidents are rare. To alleviate this issue, we leverage the ob-
servation that when safe and colliding adversary trajectories are closer
together, the vehicle is less safe because there is generally less buffer to
avoid accidents. Specifically, we generate/utilise data on adversaries’ safe
trajectories, which is more abundant than accidents data, and compute
colliding adversarial trajectories that are as close as possible to the safe
trajectories. The average distance between safe and colliding adversar-
ial trajectories provides an indicator of the vehicles’ safety. To compute
colliding adversarial trajectories, we take into account that the driving
strategy of the vehicle being assessed is not fully known, and therefore
propose a multi-objecive POMDP framing of the problem and an on-line
planning method, called Constraint-Aware Tree (CAT), to compute ap-
proximate solution to the multi-objective POMDP. Evaluations of four
learning-based autonomous driving software on pedestrian crossing and
lane merging scenarios, derived from the National Highway Traffic Safety
Administration (NHTSA), indicate the viability of the proposed testing
mechanism in assessing a variety of autonomy software. Moreover, evalu-
ations of CAT on the nuScenes dataset indicate that CAT generates more
colliding adversarial trajectories in less time compared to state-of-the-art
learning-based method, STRIVE.

Keywords: Autonomous Cars · Motion Planning · Partially Observable
Markov Decision Process

1 Introduction

As autonomous robots start to become consumer products, their safety assess-
ment becomes increasingly important. This paper focuses on a type of safety
assessment which aims to rank the safety of different autonomous robots. Specif-
ically, given a set of multiple autonomous robots with similar hardware capa-
bilities but different autonomy software, our goal is to rank the safety of these
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autonomous robots under a given testing scenario. The algorithms that pilot
these robots may not be known a priori, but we assume that the safety assess-
ment mechanism is provided with a simulator that can be used to probe the
robots’ behaviors, albeit with some inaccuracies and errors. The mechanism and
method we propose can be applied to assess the safety of various types of robots,
but in this paper, we focus on the safety assessment of autonomous cars.

The car industry has a well-established safety assessment, namely the New
Car Assessment Program (NCAP) rating system [28]. This rating system has
originally focused on the physical structure of the vehicle, such as the famous
crash test. NCAP has started to expand their testing to accommodate au-
tonomous technologies such as autonomous emergency braking, lane support
systems, automatic emergency steering and speed assistance systems [31]. These
NCAP testing mechanisms do not require the inner working of the cars or its
autonomous technologies to be disclosed, which is suitable to assess the safety
of autonomous systems with potentially many black-box components. However,
their testing rely on hand-crafted adversary strategies that are not adaptable to
the behaviors of the cars being assessed [30]. For instance, in testing pedestrian
avoidance capability, a mock-up pedestrian acts as an adversary to the vehicle
being tested, but its behavior in crossing the street is generated without consid-
eration of the behavior of the vehicle being assessed. As a result, they are often
insufficient to test many autonomous car technologies with Level 3 Autonomy
and beyond. Methods that generate adaptable adversary strategies for testing
the safety of autonomous cars have been proposed. Most rely on machine learn-
ing techniques that require a large amount of data (e.g., [34, 48]). However, large
datasets for such training are generally difficult to obtain because accidents, and
more importantly catastrophic accidents, are rare, which is fortunate for the
users, but lead to limited accident data for safety assessment [21]. Moreover,
the long training time tend to be prohibitive in performing frequent assessment,
such as every time software update is performed.

To alleviate the above difficulty, in this paper, we propose an adaptive safety
assessment mechanism based on the observation that autonomous cars with
closer safe and colliding adversaries’ trajectories tend to be less safe, because
there is less buffer to avoid catastrophic accidents. The mechanism starts by
generating/utilizing data on adversaries’ safe trajectories, which is much more
abundant than accident data. For each such trajectory, the mechanism com-
putes colliding adversarial trajectories that are as close as possible to the safe
trajectory. The average Fréchet distance between the safe trajectories and their
associated colliding trajectories indicates the relative safety of the assessed au-
tonomous car, where smaller average distance indicates less safe vehicles.

Core to the above safety assessment mechanism is an efficient method to
compute colliding adversarial trajectories that are as close as possible to a given
safe trajectory. Such a method must take into account that the driving strategy
of the vehicle being assessed is not exactly known. Therefore, computing collid-
ing adversary trajectories is essentially a Partially Observable Markov Decision
Process (POMDP) problem. To compute colliding trajectories that are also as
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close as possible to a given safe trajectory, we explicitly frame the problem as a
multi-objective POMDP problem and develop a novel online planning method,
called Constraint-Aware Tree (CAT), to approximately solve such a POMDP.

To evaluate CAT’s performance, we compare CAT with STRIVE [34], a state-
of-the-art learning-based methods to generate collision trajectories on complex
vehicle-vehicle traffic scenarios, on the nuScenes dataset [5]. The results indicate
that our proposed POMDP-based method is able to generate significantly more
collision trajectories, while abiding the traffic rules and uses much less com-
putational time. We also benchmarked top-rated autonomous driving software
submitted to the CARLA Driving Leaderboard [12] to validate our proposed
safety assessment mechanism. Evaluation on two scenarios: pedestrian crossing
and lane merging, which are part of the National Highway Traffic Safety Ad-
ministration (NHTSA) testable cases and scenarios [42], demonstrates the as-
sessment mechanism’s ability to evaluate a range of car strategies with varying
safety levels based on the Fréchet distance of the collision trajectories generated.

2 Background and Related Work

2.1 Autonomous Car Verification and Testing

Previous work such as [2, 38, 46] explored the use of formal methods for au-
tonomous car system verification. These methods require complete formal speci-
fications to be accurate, and is often difficult to construct completely due to the
complexity of autonomous car systems. Scalability issues often occur due to the
huge possibilities of different scenarios that an autonomous car might encounter.
Other work such as [6, 29, 41, 45] attempt to generate test scenarios leading to
accidents within their assessment mechanism. One of the difficulties encountered
were the rare nature of accidents, which would require a large compute time to
obtain edge-case scenarios. Therefore, [18] and [37] aimed to estimate and pre-
dict future trajectories to form scenarios using particle filtering and probabilistic
methods. Due to the scarcity of data, [25] proposed a framework using confor-
mal prediction to guarantee a low false negative rate in a driver alert system.
However, this method still relies on the need for unsafe data, with the error rate
decreasing even more with the increase in data provided.

Obviously, a mechanism to test the safety of a car is not new. The well-
accepted NCAP testing protocol was introduced in 1979. However, testing sce-
narios developed by NCAP are mostly static with no consideration of the be-
havior of the car being assessed, which is not suitable for autonomous cars.
To generate safe and collision trajectories, our proposed testing mechanism will
benefit from having a predictive model of the car’s behavior, albeit imperfect.
For this purpose, many work can be adopted, such as [4, 13, 17, 36]. Adversarial
trajectory generation can also benefit from work on pursuit evasion, such as [10]
and [23], though the latter is focused on deforming observations rather than an
adversary’s behavior.
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2.2 POMDP Formulation

The standard POMDP can be formally defined by the 8-tuple ⟨S,A,O, T, Z,R,
b0, γ⟩, where S is the set of states s; A is the set of actions a; O is the set
of observations o; T (s, a, s′) is the transition function denoting the probability
P (s′|s, a) of the agent landing in state s′ ∈ S after performing action a ∈ A
from previous state s ∈ S; Z(s′, a, o) is the observation function denoting the
probability P (o|s′, a) the agent makes observation o after executing action a′ ∈ A
in state s′ ∈ S; R(s, a) ∈ R is the reward function; b0 is the agent’s initial belief;
γ ∈ (0, 1) is the discount factor. The agent’s goal is to find a policy π which
maximizes the value function given by V (b, π) = E [

∑∞
t=0 γ

tR(st, at)|b, π]. The
optimal policy is then defined as π∗ = argmaxπ∈

∏V (b, π), where
∏

is the set
of policies defined as mappings from beliefs to actions.

In certain situations, the problem is further complicated by the presence
of multiple objectives. For example, a battery powered robot have to complete
tasks while minimizing power consumption. Such problems can be modeled and
solved as Multi-objective POMDPs [40]. A naive way to solve MOPOMDPs is
to convert the vector-valued reward function to a scalar function via weight
scalarization, and solve using single-objective POMDPs. Another way is to set
some of the objectives as constraints, forming a Constraint-POMDP (CPOMDP)
problem. In this case, the POMDP has to be solved while requiring that the
constraints are respected. CPOMDPs are generally harder to solved compared
to POMDPs. The CPOMDP is defined as ⟨P,C⟩, with P being the POMDP
and C(s)∀s ∈ S denoting the constraint set. Its solution is a policy for P that
satisfies all the constraints defined in C. Our proposed method, CAT, adopts
this second approach.

2.3 Related MOPOMDP and CPOMDP Solvers

The state of the art of solving MOPOMDPs is less mature compared to POMDPs.
The idea proposed in [35] is to compute a bounded approximation of the opti-
mal solution set for all possible weightings of the objectives. It reuses policies
and value functions from previous iterations while solving a series of scalarized
single-objective POMDPs, yet this is still quite expensive to compute.

Solving CPOMDPs includes either sub-optimal or approximate methods based
on extending existing POMDP solving methods such as PBVI [22], dynamic pro-
gramming [19], approximate linear programming [32] or online search [43]. Ap-
proximate dynamic methods such as [22] shows that optimal policies in CPOMDPs
can be randomized and solved it using PBVI with admissible costs. In [19], an
exact dynamic update for CPOMDPs using a piecewise linear representation of
the value function is proposed. However, the proposed technique is only useful
for finding solutions to modestly sized sequential decision problems that include
uncertainty and constraints and will struggle to scale to large-scale problems.
The work in [43] shows that constraints cannot be modeled simply as a reward
function as its value needs to be properly tuned to obtain a good policy, which
can be time-consuming.
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2.4 Fréchet Distance

Fréchet distance [14] measures the similarity between two curves while adhering
to the order of points on the curve. Suppose P : [0, 1] → Rn and Q : [0, 1] → Rn

are two curves on the same space. Then the Fréchet distance between these two
curves are:

d(P,Q) = inf
α,β

max
t∈[0,1]

||P (α(t))−Q(β(t))|| (1)

among all possible α : [0, 1] → [0, 1] and β : [0, 1] → [0, 1], which are continuous
reparameterisations of P and Q that are non-decreasing and subjective.

For computational efficiency, in this paper, we use the approximation of Eq.
(1) via discrete Fréchet distance, approximating P and Q as polygonal chains,
resulting in the following definition. Suppose P ′ : (p1, p2, p3, · · · , pm) and Q′ :
(q1, q2, q3, · · · , qm′), where pi, qj ∈ Rn for i ∈ [1,m], j ∈ [1,m′]. Then the Fréchet
distance between these two polygonal chains are:

d(P ′, Q′) = min
k,l

max
t

||pk(t) − ql(t)||

where:
(i) k(t+ 1) = k(t) + 1 and l(t+ 1) = l(t), or
(ii) k(t+ 1) = k(t) and l(t+ 1) = l(t) + 1 (2)

Suppose m ≥ m′, then t ∈ [1,m], while k(t) and l(t) maps the index t to an
index of the points in P ′ and Q′, respectively. This distance can be computed in
O(mm′ log logm

logm ) time and O(m+m′) space[1].

2.5 The ϵ-constraint Method

Given the following Multi-Objective Mathematical Programming (MOMP) Prob-
lem [26]:

max (f1(x), f2(x), · · · , fp(x)) s.t. x ∈ S (3)

where x is the vector of decision variables, f1(x), · · · , fp(x) are the p objective
functions. S is the feasible region. In the ϵ-constraint method, one of the objective
function is optimized using other objective functions as constraints. They are
incorporated into the constraint part of the model shown below [7, 11]:

max f1(x) s.t. f2(x) ≤ e2, · · · , fp(x) ≤ ep, x ∈ S (4)

The efficient solution can be obtained by parametrical variation of the con-
straint objective functions (ei). Applying the general weighting method to the
original feasible problem in linear problems will result in a corner solution. In-
stead, the ϵ-constraint method alters the original feasible region and is able to
produce non-extreme efficient solutions, thus obtaining a more rich representa-
tion of the efficient set. The ϵ-constraint method also negates the need to scale
the objective functions to a common scale before forming the weighted sum.
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Fig. 1. Proposed safety assessment mechanism

3 The Safety Assessment Mechanism

Fig. 1 illustrates the proposed safety assessment mechanism. This mechanism
treats the autonomous driving system of the car being assessed as a black-box,
while taking the vehicle’s kinematics and dynamics constraints as inputs. Note
that information about the kinematics and dynamics of the car does not need to
be perfect. The safety of the autonomous car is assessed under a given problem
scenario. The problem scenario can be specifically designed to test certain com-
ponents of the vehicle, or a derivation of existing safety assessment standard,
such as NCAP. We assume these testing scenarios are provided and defined as
⟨E,AV,Πk

i=1advi⟩, where E ⊆ Rm with m ∈ [2, 3] denotes the workspace of the
assessed vehicle and the adversaries.

The vehicle being assessed is denoted as AV and defined as ⟨Sc, Ac, Fc⟩,
where Sc is the set of states of the vehicle being assessed, Ac is the set of actions
the assessed vehicle can perform, and Fc(sc, ac, t,∆t,Pc) is the assessed vehicle’s
dynamics function, which outputs a possible next state after an action ac ∈ Ac

is performed from state sc ∈ Sc at time t for a duration of ∆t and perturbed
by an error distribution Pc. The mechanism does not know the exact action the
car takes at any given time and state, but it can construct an internal model
based on the observed behavior. This internal model is of course not exact, and
therefore the assessment mechanism considers that the vehicle behavior to only
be partially observed.

The notation advi denotes an adversary and k denotes the number of ad-
versaries in the problem scenario. An example of an adversary is the pedes-
trian in a pedestrian avoidance testing scenario. An adversary advi is defined
as ⟨Sadvi , Aadvi , Fadvi⟩, where Sadvi

is the set of states and Aadvi
is the set of

actions of adversary-i. Fadvi(sadv, aadv, t,∆t,Padvi) is a stochastic model of the
adversary’s dynamic function. It outputs the adversary’s next state after an ac-
tion aadv ∈ Aadvi is performed from state sadv ∈ Sadvi

at time t for duration ∆t,
influenced by error distribution Padvi

.
To assess the vehicle’s safety, our proposed mechanism controls the behaviors

of the adversaries. Specifically, the mechanism computes a set of safe trajectories
of the joint adversaries advi (i ∈ [1, k]), denoted as Φ. The mechanism can also
use real safe trajectories data, if available. For each safe trajectory ϕ ∈ Φ, the
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mechanism computes a set Ω(ϕ) of adversarial trajectories that are as close as
possible to the safe trajectory but cause collisions with the assessed vehicle.
The problem of computing such colliding trajectories is framed as a POMDP
to account for the partial observability of the assessed vehicle’s behavior and
internal reasoning. Due to the conflicting nature of the objectives —being close
to a safe trajectory while colliding with the assessed vehicle—, the POMDP
policy is computed using CAT, which is designed for multi-objective POMDPs
and presented in Section 4.

The safety indicator is then computed as the average Fréchet distance be-
tween the safe trajectories and the associated collision trajectories:

F (Φ,Ω) =
1

|Ω|
∑
ϕ∈Φ

∑
ω∈Ω(ϕ)

F (ϕ, ω) (5)

where Ω =
⋃

ϕ∈Φ Ω(ϕ) with ϕ ∈ Φ being a safe trajectory for the adversary(ies)
and Ω(ϕ) being the set of colliding trajectories associated with ϕ. The notation
F (ϕ, ω) represents the discrete Fréchet distance (Eq. (2)) between a safe and a
corresponding colliding trajectories of the adversary(ies).

Based on the definition of Fréchet distance, F (ϕ, ω) = δϕ,ω implies that
∀p∈ϕ∃q∈ω q ∈ B(p, δϕ,ω), where B(p, δϕ,ω) ⊂ E is a ball centered at p with
radius δϕ,ω. Therefore, F (Φ,Ω) = δ implies that on average, any point of a
safe adversary trajectory is only δ distance away from a colliding trajectory.
Assuming the set of safe and colliding adversarial trajectories used in the distance
computation are sufficiently representative, an autonomous car with smaller δ
will likely have less buffer to avoid accidents compared to those with larger δ.

4 Constraint-Aware Tree (CAT)

CAT is an online POMDP solver that computes a close to optimal policy for
the adversaries to collide with the vehicle being assessed as fast as possible,
while being as close as possible to a given safe trajectory ϕ ∈ Φ. This problem
is essentially a multi-objective optimization problem and CAT adopts the ϵ-
constraint approach [26] to compute a (close to) pareto optimal policy.

Specifically, CAT sets the distance to the safe trajectory ϕ as a constraint
in computing a strategy for the adversary(ies) to collide with the vehicle being
assessed as fast as possible. To identify a suitable distance constraint to use,
CAT selects a finite set of distance constraints, denoted as E = {ϵ1, ϵ2, · · · , ϵn},
where ϵi < ϵi+1 for all i ∈ [1, n− 1]. Conceptually, CAT constructs a CPOMDP
problem for each constraint ϵi ∈ E and evaluates the values and collision rate
of the CPOMDP’s policy. To generate the adversaries’ trajectories, at each time
step, CAT selects the best action of the CPOMDP with the smallest distance
constraint among those whose estimated collision rate at the current belief is
larger than or equal to a given threshold.

Key to CAT is that although conceptually, it computes the best solution of
n CPOMDPs, CAT computes all of them at once, utilising prior computations
as much as possible. The details of CAT’s procedure are provided below.
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4.1 The Multiple CPOMDP Models and Their Features

Let’s denote the CPOMDP problem associated with distance constraint ϵi ∈ E as
Pϕ,ϵi = ⟨S,A, T,O, Z,R, γ, C, ϕ, ϵi⟩, where i ∈ [1, n] and n = |E|. The constraint
C(s) at state s ∈ S is satisfied if and only if d(ϕ, s) ≤ ϵi, where d(ϕ, s) is
the distance function as defined in Eq. (2) (s can be viewed as a degenerate
polygonal chain). Moreover, a state s ∈ S where C(s) is not satisfied is modelled
as a terminating state. Intuitively, the constraint limits the movement of the
adversaries to only be inside the union of ϵi-balls around the safe trajectory ϕ,
i.e., inside

⋃
p∈ϕ B(p, ϵi) ⊂ S where B(p, ϵi) is a ball center at p and radius ϵi.

This framing of the constraints enables CAT to solve the CPOMDPs Pϕ,ϵi as
unconstrained POMDPs where states that do not satisfy the constraint becomes
terminating states and entering them incur a penalty. For simplicity, we use the
same notation to refer to the CPOMDP and its corresponding POMDP problem.

Although the above POMDP problem can be solved using existing solvers,
solving n POMDP problems separately for each safe trajectory is too expen-
sive. But, notice two features of these problems. First, all n POMDP problems
(converted from the CPOMDPs Pϕ,ϵi for i ∈ [1, n]) have the same state, ac-
tion, and observation spaces, transition and observation functions, and differ
only in their reward functions. The second feature is the set of reachable be-
liefs of the POMDPs associated with smaller distance constraints is a subset of
those of POMDPs associated with larger distance constraints. Therefore, sup-
pose R(Pϕ,ϵi , b0) is the set of beliefs reachable from the initial belief b0 for
POMDP Pϕ,ϵi , since the set of distance constraints E is constructed such that
ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵn, then R(Pϕ,ϵi , b0) ⊆ R(Pϕ,ϵi+1 , b0) for i ∈ [1, n − 1]. CAT
exploits these two features to compute the solution to all n POMDPs at once
and to reuse prior computation.

4.2 Belief Tree Construction and Backup

Fig. 2. CAT computes all n CPOMDPs at
once.

Similar to almost any online POMDP
solver today, CAT constructs a be-
lief tree and uses the tree to repre-
sent the POMDP policy. Due to the
similarity of the POMDPs and the
subset relation of the reachable be-
liefs of the different POMDPs, given
a safe trajectory, it is sufficient for
CAT to construct only a single belief
tree (denoted as T ) for solving all n
POMDPs.

The belief tree T is a tree where
each node b represents a belief in the belief space B. For simplicity, we use the
same notation for a node in T and its corresponding belief in B. An edge in T is
labeled with a pair of action–observation (a, o) where a ∈ A and o ∈ O. Also, an
edge labeled (a, o) from a node b to b′ means b′ = τ(b, a, o). To reflect the different
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rewards, and hence value functions of the different POMDP problems, at each
node b of T , CAT maintains both the value functions [V1(b), V2(b), · · · , Vn(b)]
and Q-value estimates [Q1(b), Q2(b), · · · , Qn(b)], where Vi and Qi for i ∈ [1, n]
denotes the corresponding estimated values of b for the POMDP problem that
corresponds to Pϕ,ϵi where ϵi ∈ E . In addition, to help decide which problem to
evaluate when, CAT maintains the total number Ni of times Pϕ,ϵi is evaluated
and the number Ni(b) that a node b in T is visited for evaluating Pϕ,ϵi for
i ∈ [1, n]. Fig. 2 illustrates the belief tree CAT constructs.

To construct T , CAT starts by selecting the particular POMDP problem
Pϕ,ϵi (i ∈ [1, n]) to evaluate using a bandit algorithm based on [44]:

i = argmax
j∈[1,n]

(
Rj(b0) + C

√
log(Nj)

Nj(b0)
+D · diff(R)

)
(6)

where Rj(b0) is the estimated collision rate for performing the action with
the highest Q-value at belief b0, and diff(R) = H − Rj(b0) is the difference of
the estimated collision rate to collision threshold H. Nj is the total number of
times Pϕ,ϵi is evaluated and Nj(b) is the number of times node b is visited for
evaluating Pϕ,ϵi . The constant C is an exploration constant, with larger values of
C biases the algorithm towards exploration. The constant D balances sampling
towards problems Pϕ,ϵi with collision rate less than H, with sufficient sampling
possibly bringing it over the threshold.

Suppose the problem selected is Pϕ,ϵi . Then, to expand T under the POMDP
problem Pϕ,ϵi , CAT uses a POMCP-like method [39] and perform episode sam-
pling — a sequence of ⟨s, a, o, r⟩, where s ∈ S, a ∈ A, o ∈ O, and r = R(s, a).
Each node of T is represented as a set of state particles, and to sample an
episode, CAT starts by sampling a particle from the root node b0 of T . Suppose
the sampled particle is s ∈ S, then CAT selects an action a ∈ A to use based on
UCB1 [3] strategy: a = argmax

a′∈A

(
Qi(b0, a

′) + c′ ·
√

log(Ni(b0)
Ni(b0,a′)

)
, where Qi(b0, a

′)

is the estimated Q-value for performing a′ at belief b0 under the POMDP prob-
lem Pϕ,ϵi . Once an action is selected, CAT samples a next state s′ ∈ S based
on T (s, a, s′), samples an observation o ∈ O based on Z(s′, a, o), and a reward
r = R(s, a) is then incurred. If the pair (a, o) has been used to expand b0, s′
is added to the set of particles representing node b, which is the child of b0 via
(a, o). In this case, if s′ is not a terminating state, the sampling process repeats
starting from b. Otherwise, backup is performed to revise the value estimate.
If the pair (a, o) has not been used to expand b0, a new node b is added as a
child of b0 in T via an edge labelled (a, o). A default (roll-out) strategy is then
performed to provide an initial value estimate for b, and backup is performed to
revise the value estimate of the nodes visited by the sampling process.

Since all n POMDP definitions differ only in the reward functions and due
to the subset relation of the reachable beliefs of the POMDPs (discussed in Sec-
tion 4.1), the outcome of sampling for one POMDP can be propagated to other
POMDP problems too. For example, if the episode for problem Pϕ,ϵi terminates
and receive a large negative reward due to violating the constraint ϵi, then this
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termination and reward would apply to all Pϕ,ϵk where k < i ∈ [1, n] too. Con-
versely, reaching a goal for Pϕ,ϵk without violating ϵi would mean the goal can
be reached for all Pϕ,ϵk for k > i ∈ [1, n]. This feature enables CAT to perform
sampling for multiple CPOMDP problems simultaneously to increase sampling
efficiency and accuracy.

After an episode for a POMDP problem, say Pϕ,ϵi , is sampled, CAT updates
the value functions, Q-value estimates and the statistics of all the nodes in T
along the path visited by the episode, under the problem Pϕ,ϵi . The Q-value
function is updated using a stochastic version of the Bellman backup, following
the implementation of ABT [24] and evaluation in [16]. Suppose an element of
the sampled episode is ⟨s, a, o, r⟩, where s ∈ S is a particle of node b in T ,
a ∈ A, o ∈ O, r = R(s, a), and suppose b′ is the child node of b in T via
edge (a, o). Then, the updated Q-value is computed as: Qi(b, a) = Qi(b, a) +

1
Ni(b,a)

(r + γVi(b
′)−Qi(b, a)), where Ni(b, a) is the number of times action a is

used to expand node b under problem Pϕ,ϵi .

4.3 Selecting the Set of Distance Constraints

Last but not least, the question is how do we select the set of distance constraints
E . For this purpose, CAT first computes the minimum ϵmin and maximum ϵmax

distance that the adversaries need to move in order to collide with the assessed
vehicle assuming deterministic motion, based on the known kinematics and dy-
namics of the vehicle. CAT then discretizes the range [ϵmin, ϵmax] ⊂ R based on
a given resolution and sets the discretized points as the distance constraints.

5 Experiments and Results

The purpose of our experiments is twofold. The first is to evaluate CAT in gen-
erating colliding adversarial trajectories that are as close as possible to a given
safe trajectory. We use nuScenes dataset, a public autonomous driving dataset
containing a diverse set of traffic scenes. The second purpose is to test if the av-
erage Fréchet distance, as described in Eq. (5), can be used as a safety indicator
for different autonomous driving software systems (these systems refer to the
full-stack software, which includes perception, planning and control). We design
testing scenarios based on the NHTSA pre-crash scenario typology [27] within
CARLA Driving Simulator to benchmark top performing controllers submitted
to the CARLA leaderboard. The experiments are performed on a desktop com-
puter with an 8 Core Intel Xeon Silver 4110 Processor and 128GB DDR4 RAM.
Our proposed solver, CAT, and the POMDP-based motion planning problems
are implemented using the software toolkit OPPT [15].

5.1 Adversarial Scenario Generation using CAT

We first highlight the capabilities of CAT in generating adversarial collision
trajectories. We compare CAT against STRIVE, a state-of-the art Machine
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Table 1. Collision trajectory generation comparison on nuScenes dataset

Method t (s) Scenes where collision
trajectory is present

Collision
rate (%)

Fréchet
distance, δ

STRIVE (reported) 420 (offline) 162/327 - -
STRIVE (validated) 420 (offline) 142/327 - 9.936
ABT (w=1) 3 (online) 192/327 86.88 ± 3.688 8.022 ± 5.686
ABT (w=5) 3 (online) 179/327 90.66 ± 3.273 6.930 ± 4.303
ABT (w=10) 3 (online) 146/327 79.52 ± 4.766 4.228 ± 3.029
CAT (Ours) 3 (online) 205/327 88.06 ± 3.349 7.233 ± 4.594
CAT (Ours) 6 (online) 211/327 88.25 ± 3.258 7.336 ± 5.064
CAT (Ours) 9 (online) 211/327 90.03 ± 2.916 7.249 ± 4.992

Learning-based method, and ABT, a POMDP method which acts as a baseline.
For POMDP-based methods, each scene is repeated for 10 runs and a plan-
ning time per step t of 3 seconds. This set of experiment is conducted on the
nuScenes dataset which contains a diverse set of road traffic scenes collected
from Singapore and Boston. This dataset is simplified to only include car and
truck vehicles operating on rasterized drivable area, carpark area, road divider
and lane divider map layers. The goal of the controlled adversarial agent is to
generate collision trajectories with the identified target vehicle (the vehicle be-
ing assessed), while navigating through traffic and avoiding collision with other
vehicles and the environment.

STRIVE STRIVE generates collision trajectories by optimizing the latent
space of a learned traffic model in the form of a graph-based conditional VAE.
It uses 2s (4 steps) of prior motion to predict 6s (12 steps) of potential colli-
sion trajectories. We replicate and analyze the collision trajectories generated by
STRIVE and exclude scenes where the agent is in environmental collision in its
inital state. We observe that STRIVE is able to generate collision trajectories for
162 of the 368 scenes tested as seen in Table 1. However, upon visual inspection
of the trajectories, we found that in 20 of these scenes, the collision trajectories
violate traffic rules. For instance, the agent cuts across road dividers and going
off-road as seen in examples in Fig. 3. If we were to label these collision trajecto-
ries as false positives, and therefore no collision trajectories are present in those
20 scenes, STRIVE is only able to find solutions in 142 of the 327 scenes.

ABT Our mechanism rely on the ability to generate many colliding trajectories
that are as close as possible to the safe trajectories for the adversaries. Due to
the partially observable nature of the assessed vehicle strategies, this trajectory
generation problem is essentially a POMDP problem. However, it has conflicting
objectives. A baseline method for solving such POMDP problems is via weights
scalarization, i.e., the reward for one step move is rstep = w · rbase · dl2 , where
rbase is the base step penalty and dl2 is the Euclidean distance to the safe trajec-
tory. It is designed to encourage collision while minimizing distance to the safe
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Fig. 3. Qualitative comparison of trajectories generated on nuScenes dataset. The tar-
get trajectory is the trajectory of the identified target vehicle (the vehicle being as-
sessed). Row 1: Invalid collision trajectories generated by STRIVE incorrectly labeled
as successful. CAT finds valid collision trajectories in these scenes. Row 2: The collision
trajectories generated by CAT are closer to the safe trajectory compared to STRIVE,
as indicated by the smaller average Fréchet distance.

trajectory. We model the vehicle to have the same driving parameters matching
STRIVE which uses 2D bicycle kinematics, discretized evenly to form 25 dis-
tinct actions. To compute an optimal solution for ABT, we first need to take an
extra step to find the suitable w. The performance comparison between ABT
using this baseline techniques with w = {1, 5, 10} is presented in Table 1. The
results indicate that although increasing w results in collision trajectories that
are closer to the corresponding safe trajectories, the number of scenes where
collision trajectories are found, together with collision rate decreases.

CAT We used the proposed CAT solver to generate collision trajectories on the
same set of scenes. The adversarial agent is given a large reward of +1000 for
successful collision, -1000 for collision with other vehicles and the environment,
and -1 step cost. We use nϵ = 10 for all scenes.

Discussion We observe that at t = 3, CAT is able to generate collision tra-
jectories in 205 out of the 327 scenes, a significant improvement compared to
STRIVE’s 142 and ABT’s 192. CAT also has a high average collision rate at
88.06%. In many scenes, CAT is able to generate successful collision trajectories
within road boundaries unlike STRIVE, as shown in Fig. 3. Unlike ABT, CAT
does not need to find optimal weights since it does not rely on reward function
to bias the objectives. Instead, it intelligently solves for all ϵ at the same time.
At t = 3, CAT achieves a comparably high collision rate compared to ABT. At
this planning time, CAT essentially solves 10 CPOMDPs at once.

One may wonder the collision rate comparison between ABT and CAT on
the same scenes. If we consider only the scenes where both ABT and CAT find
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collision trajectories, then CAT achieves a collision rate of 92.98±2.532% at 9s
planning time, while ABT(w=5) achieves a collision rate of 92.23±3.028% at 3s
planning time.

Note that our goal is not just to generate collision trajectories, but collision
trajectories that are close to the safe trajectory. We observe that the trajectories
generated by CAT has the lowest δ unit distance at 7.233, compared to STRIVE’s
9.936 and ABT’s 8.022. Several examples shown in Fig. 3 shows that the collision
trajectories generated by CAT deviates less from the original safe trajectories,
maintaining naturalness while generating the collision trajectories. The results
indicate CAT’s effectiveness in solving the multi-objective problem by being able
to generate a larger amount of collision trajectories while at the same time having
these collision trajectories being closer to the safe trajectories. These results
indicate the viability of CAT to alleviate the issues caused by rare collision data
in assessing the safety of autonomous vehicles.

Last but not least, CAT requires much less computation time than STRIVE.
Aside from hours needed to train the traffic model, each collision trajectory
STRIVE generates require it to run an adversarial optimization process, which
takes up to 7 minutes, depending on the number of vehicles in the scene. Com-
paratively, given a planning time of 3 seconds per step, with an average of 8
steps per scene, CAT is able to find a collision trajectory within 30 seconds on
average for each scene. These results indicate CAT in able to generate collision
trajectories much faster than STRIVE without large amount of prior data.

5.2 Benchmarking Autonomous Driving Software Systems in
CARLA Simulator

Here, we evaluate if the average Fréchet distance, as described in Eq. (5), can
be used as a safety indicator. We implemented 2 scenarios based on the NHTSA
pre-crash scenario typology: Pedestrian Crossing and Lane Merging. Using these
two scenarios, we benchmarked four of the top ranked state-of-the-art Machine
Learning based methods submitted to the CARLA Autonomous Driving Leader-
board. The software system takes as input the measurements from the various
sensors (Lidar, Radar, RGB sensors) on the vehicle and are trained using Deep
Learning methods to navigate through various traffic scenarios. We use pre-
trained weight provided by the respective authors for the experiments.

Autonomous Driving Software Systems We give a short description of
the software systems being assessed in this section. TCP [47] is a camera-only
model. By observing that waypoints are stronger at collision avoidance com-
pared to directly predicting controls, it proposes a situation-dependent network
with two branches which generates the waypoints and control signal respectively.
During run time, the two outputs are generated with a weighted average that
varies based on whether the vehicle is turning. NEAT [8] proposes neural at-
tention fields which enables reasoning for end-to-end imitation learning. It uses
imitation-learning with attention and implicit functions to iteratively compress
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(a) (b)

Fig. 4. Experiment Scenarios: (a) Pedestrian Crossing and (b) Lane Merging

high dimensional 2D image features into a compact bird-eye-view representation
for driving. The attention mechanism has been demonstrated to be a powerful
module, however the utilization of a relatively dense representation drastically
increases model complexity. AIM [33] takes the birds-eye-view of the target lo-
cation as an input, similar to NEAT, which is then sent to a ResNet 34 encoder
pre-trained on ImageNet. It outputs waypoints through four GRU decoders fol-
lowed by PID controllers. Adding auxiliary tasks during training such as using
a deconvolutional decoder to predict the 2D depth and semantic segmentation
is shown to increase driving performance. TF++ [20] is an improved variant of
Transfuser [9] by modifying its architecture, output representation and training
strategy. It uses a transformer decoder for pooling features to mitigate out of
distribution errors that may arise when steering directly towards a target point.
It also considers the prediction uncertainties into the final output by using a con-
fidence weighted average of the predicted target speed as input to the controller
as an attempt to reduce collisions.

Scenario 1: Pedestrian Crossing This well-known scenario is derived from
a testing scenario used by NCAP to assess the emergency braking system of an
autonomous vehicle. Fig. 4(a) illustrates an instantiation of this scenario. The
assessed vehicle is moving in one lane of the street and approaches a pedestrian
crossing the street in front of the vehicle. In this scenario, the adversary is the
pedestrian, controlled by CAT, with the objective of causing a collision with
the approaching assessed vehicle. The pedestrian has 9 actions, moving along
equally spaced directions between and including East and West directions, at a
fixed velocity of 2.5m/s. The pedestrian’s motion is deterministic and it perceives
a noisy observation of the distance between itself and the assessed vehicle.

Scenario 2: Lane Merging Fig. 4(b) illustrates an instantiation of this sce-
nario. The autonomous vehicle being assessed starts at the right lane of a two-
lane road. Its objective is to merge to the left lane between the two vehicles
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(a) (b)

Fig. 5. Experiment Results for (a) Pedestrian Crossing and (b) Lane Merging

Table 2. Autonomous Driving Software System Driving Score on CARLA Leaderboard

Software System Driving Score ↑ Collisions pedestrians ↓ Collisions vehicles ↓
TCP 75.14 0 0.32
TF++ 66.32 0 0.5
NEAT 21.83 0.04 0.74
AIM 19.38 0.18 1.53

as seen in Fig. 4(b). The two adversarial vehicles have 5 varying speeds of vcar
given by {3, 4, 5, 6, 7}m/s. Each action is also influenced by uncertainty given by
µ [−0.02vcar, 0.02vcar]. This is a challenging scenario for CAT as it is controlling
two agents instead of only one, doubling the size of the action space.

Benchmark and Results For both scenarios, experiments were conducted on a
set Φ of 10 different safe trajectories and 10 sets of 50 colliding trajectories, with
each set Ω(ϕ) of colliding trajectory corresponding to a safe trajectory ϕ ∈ Φ.
For each software system, the experiment is repeated on both dry and wet road
conditions. A planning time per step of 10s is given to CAT for both scenarios.
At the same time, to establish a baseline of safeness of each software system,
we simulate 5,000 runs (50 runs for each of 100 random safe trajectories) for
both scenarios. A higher average collision rate would indicate that the software
system is generally more dangerous at the tested road condition. We list the
benchmark results for Scenarios 1 and 2 in Fig. 5(a) and Fig. 5(b) respectively.
We observe that in both scenarios, the safer the software system is (given by the
lower collision rate from validating random trajectories), the higher the Fréchet
Distance, δ obtained from generating the collision trajectories using CAT, indi-
cating the vehicle has larger room to account for errors and uncertainty. This
consistent trend of results shown in both scenarios indicates the effectiveness of
our proposed safety assessment mechanism.

An interesting observation is that while we would expect a vehicle to be safer
or at least remain the same in the dry compared to wet conditions, NEAT soft-
ware system exhibits the opposite behavior in Scenario 1. The Fréchet Distance
obtained in wet conditions is larger compared to dry conditions, and is also vali-
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dated by the increase in collision rate. This is an example of the unique behavior
that CAT is able to identify using our proposed safety assessment mechanism.

The vehicle rankings scores obtained from CARLA Leaderboard is shown in
Table 2. A higher score exhibits the software system’s ability to complete the
routes while minimizing infractions such as collisions with other pedestrians or
vehicles. Here, we observe the Driving Score is inversely correlated to the number
of collisions with other vehicles (normalized per km). The trend for our results in
Scenario 2 is the same (Fig. 5(b)), indicating that for Scenario 2, our proposed
mechanism is aligned with the safety indicator of the CARLA Leaderboard.
However, the trend is different in Scenario 1. The reason for this difference in
trend for Scenario 1 requires further investigation.

In CARLA Leaderboard, assessment is performed by having the software
system traverse routes on 2 secret maps containing different test scenarios. Users
has reported discrepancies in reported results by resubmitting the open-sourced
methods using released or retrained model files [20]. Since the evaluation is secret,
the exact reasons for these fluctuations is unknown. Furthermore, users are only
allowed to make up to 5 submissions per month, with evaluation time taking up
to 4 weeks. Since our safety assessment mechanism is adaptive to the behavior of
the assessed vehicle, our tests does not need to be a secret. Furthermore, since our
mechanism is able to efficiently generate collision trajectories, and evaluations
can be done quickly after every software update.

6 Summary

This paper proposes a mechanism to test the safety of autonomous vehicle sys-
tems. The mechanism automatically generates crash scenarios and is adaptive
to the assessed autonomous vehicle. Given a dataset of collision-free trajectories,
rare-event collision trajectories of the adversaries are generated while accounting
for the uncertainty of the autonomous system’s strategies. Core to this mech-
anism is an on-line method to approximately solve multi-objective POMDPs,
called CAT, to efficiently generate colliding trajectories of the adversaries that
are as close as possible to a given safe trajectory. We show that CAT is able to
generate better collision trajectories with high success rate compared to state-
of-the-art Deep Learning based trajectory generation method, such as STRIVE.
Our results also indicate that the proposed safety assessment mechanism and
indicator can be applied to reasonably assess the safety of different autonomous
driving software in CARLA Simulator.

The safety assessment mechanism and CAT can be applied to assess the
safety of a wide variety of robots, though scalability might be an issue for very
high DOFs robots. Moreover, although Fréchet distance seems suitable to be
used in our framework (reasoning provided in Section 3), it is still useful to
explore other forms of distance measure in the future.
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